Organization and Molecular Evolution of CENP-A–Associated Satellite DNA Families in a Basal Primate Genome

نویسندگان

  • Hye-Ran Lee
  • Karen E. Hayden
  • Huntington F. Willard
چکیده

Centromeric regions in many complex eukaryotic species contain highly repetitive satellite DNAs. Despite the diversity of centromeric DNA sequences among species, the functional centromeres in all species studied to date are marked by CENP-A, a centromere-specific histone H3 variant. Although it is well established that families of multimeric higher-order alpha satellite are conserved at the centromeres of human and great ape chromosomes and that diverged monomeric alpha satellite is found in old and new world monkey genomes, little is known about the organization, function, and evolution of centromeric sequences in more distant primates, including lemurs. Aye-Aye (Daubentonia madagascariensis) is a basal primate and is located at a key position in the evolutionary tree to study centromeric satellite transitions in primate genomes. Using the approach of chromatin immunoprecipitation with antibodies directed to CENP-A, we have identified two satellite families, Daubentonia madagascariensis Aye-Aye 1 (DMA1) and Daubentonia madagascariensis Aye-Aye 2 (DMA2), related to each other but unrelated in sequence to alpha satellite or any other previously described primate or mammalian satellite DNA families. Here, we describe the initial genomic and phylogenetic organization of DMA1 and DMA2 and present evidence of higher-order repeats in Aye-Aye centromeric domains, providing an opportunity to study the emergence of chromosome-specific modes of satellite DNA evolution in primate genomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive evolution of foundation kinetochore proteins in primates.

Rapid evolution is a hallmark of centromeric DNA in eukaryotic genomes. Yet, the centromere itself has a conserved functional role that is mediated by the kinetochore protein complex. To broaden our understanding about both the DNA and proteins that interact at the functional centromere, we sought to gain a detailed view of the evolutionary events that have shaped the primate kinetochore. Speci...

متن کامل

Organization and Evolution of Primate Centromeric DNA from Whole-Genome Shotgun Sequence Data

The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences f...

متن کامل

Gene Family: Structure, Organization and Evolution

  Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...

متن کامل

CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains.

CENP-C is a fundamental component of the centromere, highly conserved among species and necessary for the proper assembly of the kinetochore structure and for the metaphase-anaphase transition. Although CENP-C can bind DNA in vitro, the identification of the DNA sequences associated with it in vivo and the significance of such an interaction have been, until now, elusive. To address this proble...

متن کامل

New insights into centromere organization and evolution from the white-cheeked gibbon and marmoset.

The evolutionary history of alpha-satellite DNA, the major component of primate centromeres, is hardly defined because of the difficulty in its sequence assembly and its rapid evolution when compared with most genomic sequences. By using several approaches, we have cloned, sequenced, and characterized alpha-satellite sequences from two species representing critical nodes in the primate phylogen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011